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Abstract. We summarize measurements of the CKM angle j8 at the B-factories emphasizing a 
comparison of j8 measured in the B " -^ ccK^*''^ decay channels and jSgff measured inb ^ qqs decay 
channels, such as B° -^ (aK°, B° -^ r]'K°, B° -^ 7t°K°, and B° -^ K°K°K°. 

INTRODUCTION 

Measurements of time-dependent CP asymmetries in fi" -^ {cc)K^*'^ decays, which are 
dominated by color-suppressed b -^ ccs tree amplitudes, have provided crucial tests of 
the mechanism of CP violation in the Standard Model (SM). These amplitudes contain 
the leading fc-quark couplings, given by the Cabibbo-Kobayashi-Maskawa [1] (CKM) 
flavor mixing matrix, for kinematically allowed transitions. 

Decays to charmless final states such as (j)K^, n^K^, r\'K^, and (oK^ are CKM-
suppressed b -^ qqs (q = d,s) processes dominated by a single loop (penguin) amplitude. 
This amplitude has the same weak phase /3 = arg {—VcdV*iy/VtdV*f^) of the CKM mixing 
matrix as that measured in the b -^ ccs transition, but is sensitive to the possible presence 
of new heavy particles in the loop [2]. 

The fi-factories [3] are asymmetric-energy e+e^ storage rings constructed at SLAC 
National Laboratory, USA, and KEK, Japan, to measure the parameters of the CKM 
matrix. There the BABAR and Belle detectors recorded 425 and 771 fb^^ of data at an 
energy corresponding to the mass of the Y {4S), which has a branching fraction for decay 
to BB that is essentially unity. 

The CKM phase /3 is accessible experimentally through interference between the 
direct decay of the B meson to a CP eigenstate and fi'S" mixing followed by decay 
to the same final state. This interference is observable through the time evolution of the 
decay. At the fi-factories, we reconstruct one fi" from Y{4S) -^ B^B^, which decays to 
the CP eigenstate {CC)K''*^^, (OK^, TJ'K^, TZ^K^, or K^K^K^ (BCP). From the remaining 
particles in the event we also reconstruct the decay vertex of the other B meson (Stag) 
and identify its flavor. The difference Af = tcp — ftag of the proper decay times tcp and 
ftag is obtained from the measured distance between the decay vertices of the Bcp and 
Stag and tiie boost (/3 7 = 0.56) of the Y{4S) system. In tiie n^K^ and K^K^K^ analyses 
we compute Af and its uncertainty with a geometric fit to the Y{4S) -^ if'B^ system 
taking into account the reconstructed K^ trajectory, the knowledge of the average e+e^ 
interaction point and the average B meson lifetime (for BAJiAR). The distribution of Af 
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is given by 

e -Mh F{At) = 1 = F A W ± ( 1 - 2 W ) [-T//-5/-sin(A?HdAf)-C/-cos(A?HdAf)], 

where rif is the CP eigenvalue of final state / , the upper (lower) sign denotes a decay 
accompanied by a fi" (1?) tag, T is the mean fi" lifetime, Amj is the mixing frequency, w 
is the mistag rate, and Aw = w(fi*') — w(fi*') is the difference in mistag rates for fi" and 
fi" tag-side decays. The tagged flavor and mistag parameters w and Aw are determined 
with neural network based algorithms. 

In the SM, we expect C = 0 and —rjS = sin2/3 to an accuracy of 10^^ — 10^^ for 
fi" -^ {cc)K^*'^ decays [4]. The same expectations hold for the penguin decays, assum-
ing penguin dominance of the b ^ s transition and neglecting other CKM-suppressed 
amplitudes with different weak phases. However, these CKM-suppressed amplitudes 
and the color-suppressed tree diagram introduce additional weak phases whose contri-
butions may not be negligible [5, 6, 7, 8]. As a consequence, the measured Sf (sin2/3eff) 
may differ from sin2/3 even within the SM. This deviation Â ŷ  = Sf — sin2/3 is es-
timated in several theoretical approaches: QCD factorization (QCDF) [5, 9], QCDF 
with modeled rescattering [10], soft coUinear effective theory [11], and SU(3) sym-
metry [6, 8, 13]. The estimates are channel dependent. Estimates of AS from QCDF are 
in tiie ranges (0.0,0.2), (-0.03,0.03), and (0.01,0.12) for coK^, r\'K^, and K^K^^^ re-
spectively [9, 11, 12]; SU(3) symmetry provides bounds of (—0.05,0.09) for r\'K^ and 
(—0.06,0.12) for n^K^ [13]. Predictions that use isospin symmetry to relate several am-
plitudes, including the I = j B ̂  Kn amplitude, give an expected value for S^^Of^o near 
1.0 instead of sin2/3 [14]. 

In these proceedings, we summarize measurements of time-dependent CP parameters 
in the aforementioned b -^ ccs and b -^ qqs if' decays. Detailed descriptions of each 
analysis are given in Refs. [17, 18, 19, 20]. 

ANALYSIS TECHNIQUE 

After applying loose selection criteria to reduce the dominant continuum e+e^ -^ qq 
(q = u,d,s,c) background, we perform an unbinned maximum likelihood (ML) fit to 
the data to separate signal from background and obtain the CF-violation parameters 
for each decay channel. As input to the ML fit, we use two kinematic variables and 
a Fisher or likelihood combination of event-shape variables. As kinematic variables we 
use two nearly uncorrelated variables: the energy difference between the B candidate 
and half of the known beam energy and the beam-energy-substituted mass, which is the 
invariant mass of the reconstructed B candidate computed with the constraint that the 
energy difference is zero. 

At the fi-factories, we can only reconstruct the direction of K^ mesons. Because of 
this partial reconstruction in analyses with a K^, we constrain the mass of the B meson 
to the nominal value [21] during the determination of the B decay vertex. This constraint 
causes the kinematic variables to be completely correlated, so BABAR uses only the 
energy difference and Belle uses only the center-of-mass B momentum in the ML fit. 
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TABLE 1. Measurements of CP parameters from BABAR and Belle. The first errors are statistical 
and the second are systematic. 

BABAR Belle 
Mode -^f^f Cf -^f^f 
CCK(*)° 

aK° 

ri'K° 

K°K° 
r^O r^O r^O 

0.69 ±0.03 ±0.01 

0-55+o:i±0.02 

0.57 ±0.08 ±0.02 

0.55 ±0.20 ±0.03 
n qn+0.20 +0.04 
^ • ^ ^ - 0 . 1 8 -0.03 

0.03 ±0.02 ±0.02 

-0.52+°;^2±o.03 

-0 .08 ±0.06 ±0.02 

0.13±0.13±0.03 

-0 .16±0 .17±0 .03 

0.64±0.03 ±0.02 

0.11 ±0.46 ±0.07 

0.64±0.10±0.04 

0.67 ±0.31 ±0.08 

0.30 ±0.32 ±0.08 

0.02 ±0.02 ±0.01 

0.09 ±0.29 ±0.06 

0.01 ±0.07 ±0.05 

-0 .14±0 .13±0 .06 

-0.31 ±0.20 ±0.07 

RESULTS 

The fit results are shown in Table 1. All Sf results are consistent with SM expectations. In 
particular, the world averages of Sf in ccK^*'^ and the theoretically clean rj'K^ channel 
differ by less than la. All Cf results are consistent with zero direct CF-violation. 

Decay channels such as B^ -^ J/xj/K*^ and BP -^ D^*)+D^*) K^ are sensitive to 
cos 2/3 and can help resolve the f — jS trigonometric ambiguity on the value of /3. In 
these channels, BABAR determines that cos 2/3 > 0 at 89% and 94% confidence level, 
respectively [22]. Interference in the Z)(*)'̂  Dalitz plot (DP) allows BABAR and Belle to 
determine cos 2/3 > 0 at 86% and 98% confidence level in the D^*'>^h^ channel [23]. 
Finally, through interference in the K^K^K^ DP, BABAR determines cos 2/3 > 0 at 
4.8a [24]. 

CONCLUSIONS 

We summarize measurements of mixing-induced CF-violation parameters in the b -^ ccs 
modes and several b -^ qqs penguin-dominated fi" decays at the fi-factories. Discrepan-
cies between the measurements of sin 2/3 and sin2/3eff are consistent with expectations 
from the SM. 
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